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Type-I intermittency was defined as the precursor quasiregular behavior to every tangent bifurcation
for the one-dimensional (1D) quadratic-map family. We have extended the definition to the two-
dimensional Hénon-map family with the following results. The gradual increase of bistability and
multistability that accompanies the reduction of dissipation from the 1D limit carries with it the eventu-
al decrease and disappearance of the intermittency associated with the occurrence of each stable periodic
orbit. Numerically we observe qualitative changes in the invariant orbit density and the Lyapunov ex-
ponent in the transition region, the latter showing a discontinuous, or first-order, rather than the usual
continuous phase transition. A hysteretic response of the dynamics to slow parameter change, which
usually accompanies a first-order transition, is also noted. The changes associated with various periodic
orbits, which are tabulated, show both similarities and differences. A considerable understanding of
these phenomena is achieved by an in-depth study of the topology of, and dynamics in, the phase plane
of the Hénon system. Heuristic pictures are developed for some surprising bifurcation structures.

PACS number(s): 05.45.+b

I. INTRODUCTION

Type-I intermittency was defined by Pomeau and
Manneville for the logistic-map family, y, ., =u—y2, as
the quasiregular period-n behavior that precedes the
tangent bifurcation of period n that ushers in each
period-n parameter window of stability [1]. Here a fami-
ly member is defined by a value of u; some unique attrac-
tor exists for —0.25<px <2.0. In a recent publication
[2], I described the changes in type-I intermittency that
occur for constant-J subfamilies, with J>0, of the
Hénon-map family
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preceding the period-3 saddle-node bifurcation. Here,
the subfamily defined by J =0 is identical to the logistic-
map family mentioned above. The J >0 subfamilies are
referred to as orientation preserving, and arise from a
continuous-flow system as shown by Schuster [3]. The
necessity for such changes is clear. For J =0, Singer’s
theorem establishes the existence of one attractor for
each parameter value, and thus the entire trapping region
is one basin of attraction (BA). The structure of the pa-
rameter window of stability following each tangent bifur-
cation, notably its end at a Misiurewicz point [4], makes
it clear that some form of aperiodic behavior is disrupted
whenever a tangent bifurcation occurs. Works by Hénon
[5], by Holmes and Whitley [6], and by El-Hamouli and
Mira [7] show that, when J increases above zero, multi-
stability becomes ever more prevalent, so that aperiodic
behavior in one BA is not necessarily interrupted when a
saddle-node bifurcation occurs. In the area-preserving
limit, J =1, an infinite number of elliptic basins (the
area-preserving analogs of basins of attraction) exist for
most values of p for which a trapping region exists. It
was not clear for what J>0 subfamily changes first
occur, and exactly what these changes would be. As de-
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scribed in Ref. [2], an increase in J above J =0 results in
qualitative changes in period-3 intermittency at two
values of J, namely J*(3), and J'(3). When J <J*(3), in-
termittency occurs just preceding the period-3 saddle-
node bifurcation at pu=s,(J) exactly as at J =0, and no
bistability of the period-1 and period-3 basins of attrac-
tion (BA’s) is possible. When J'(3)>J >J*(3), bistabili-
ty of period-3 and period-1 BA’s is possible, and is ac-
companied by hysteresis, with variation of u as described
in detail below. In this case, period-3 intermittency
occurs after the period-3 BA is created, and turns into
regular behavior associated with a period-3 window of
stability before the bursts of regular period-3 behavior be-
come very long. When J>J'(3), the bistability is in
some sense ‘‘complete.” Period-3 intermittency and
period-1-period-3 hysteresis can no longer accompany
the existence of the period-3 BA; one may say that the
onset of the period-3 BA has no 3-like precursor. It is of
some importance that the numerical values
J*(3)=0.00115, and J'(3)=0.01813 are both very
small, calling into question the use of the logistic model
of intermittency in comparisons with laboratory experi-
ments.

In addition to a somewhat detailed account of period-3
intermittency, Ref. [2] also gave the single number
J*(n,k), corresponding to J*(3), associated with a quali-
tative change in intermittent behavior, for a few other
periodic orbits, where (n,k) denotes the kth stable
periodic orbit occurring at J =0 in order of increasing p.
(This number will be defined below.) The purpose of the
present paper is to flesh out the reasoning and computa-
tional methods used in the period-3 case, and to extend
the detailed results to a number of higher-period cases.
From a practical point of view (defined as affecting mea-
surement on real physical systems) it is not necessary to
discuss very high periods, because parameter windows of
periodic stability decrease rapidly with increasing period,
and parameter intervals of intermittent behavior always
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are narrower than the parameter windows of stability
with which they are associated. This remark presupposes
that the Hénon map, as a low-dimensional map, is most
frequently an abstraction of an important low-
dimensional subsystem of a large system, and that the
remainder of the large system, although not requiring as
detailed treatment as the important part modeled by the
Hénon map, can be considered to create some noise that
has been shown to wash out detail in low-dimensional-
map properties.

The complications of the structure seen in a
parameter-plane bifurcation diagram of the Hénon-map
family cause the intermittency structure in parameter
space for many periods higher than 3 to be more compli-
cated then that for period 3. These complications are
caused by the intricate crossings of important bifurcation
lines in the (J,u) parameter plane. In particular, the
crossing of a potentially intermittent saddle-node line
with various members of the period-1 homoclinic fan,
which, with increasing J, grows out of the immensely de-
generate first Misiurewicz point [4] which occurs at
J =0.0,u=2.0, are noteworthy.

In Sec. II, we discuss some features of the J =0 limit
which serve as both computational and interpretive
guides for the trickier J >0 calculations. This discussion
is couched almost entirely in terms of the period-3 case,
but also applies to most other periodic windows. In Sec.
ITI, we discuss some general features of maps with J > 0.
In Sec. IV, we discuss the period-3 case in detail. In Sec.
V, we indicate the complications occurring for many oth-
er periodic orbits and estimate how high the period and
orbit type need to be followed practically in order to in-
clude intermittency that is likely to be observed. Exten-
sions to more complex maps are hinted at in the con-
clusions in Sec. VI.

II. THE CASE OF J =0

The standard features of intermittency for the J =0
Hénon subfamily are as follows (couched in the language
of the period-3 example).

(1) A time trace of an orbit for a value of u approach-
ing its period-3 saddle-node value, 55 from below, shows
alternating bursts of period-3 and chaotic behaviors; the
period-3 bursts fill an ever larger portion of the time trace
as € (=s3;—pu) decreases toward zero. The average
length of period-3 bursts varies as € 172,

(2) Concomitantly, the Lyapunov exponent A varies as
€!/2. Note that there is only one Lyapunov exponent be-
cause of Singer’s theorem.

(3) The invariant-orbit density plotted as a function of
the physical coordinate, y, macroscopically shows a sym-
metric resonance peak centered near each incipient
period-3 orbit point. Each peak, when looked at more
closely, shows a detailed structure having many primary
square-root singularities, with further structure between
these. The number of these singularities increases as €
decreases, even though the widths of the peaks decrease.
This phenomenon was first noted by Fraser and Kapral
[8]. The peak structure is calculated by following a long
orbit, typically 10° iterates (after eliminating early tran-
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sient behavior) and ordering the points in a histogram
with 2400 boxes covering the y range of the peak. A
value of p is used that is very near to the intermittent
limit.

(4) A simple understanding of all of the above rests in
an analysis of a plot of y, , ; as a function of y,, as shown
in Fig. 1. The inset shows the detailed behavior near an
orbit point, immediately indicating the reason for alter-
nating bursts of regular and irregular behavior. The nar-
rowness of the channel in the inset is a hint at the height
and structure of the resonance peaks in the invariant-
orbit density. Fraser and Kapral point out that the
square-root singularities are images of the nearby point of
zero slope of y, 1 3(y, ), a so-called critical point. Even the
rough structure of the orbit density peaks (to be shown
below as part of Sec. IV) can be attributed to the critical
points, in the form of approximate returns of square-root
singularities after chaotic excursions [9]. This structure
occurs, for small €, because the shortness of the attendent
chaotic bursts allows a primary square-root singularity to
return to the regular region without having been entirely
attenuated to background. Of course, each return is at a
random point within a peak because, despite its peak-
dominated invariant-orbit density, the attractor in the in-
termittent region is a strange attractor (SA), for which no
orbit point ever repeats itself. We also note that the rein-
jection density from the bursts of chaotic motion is uni-
form over the region of each peak, an occurrence which
is absent in some other intermittency scenarios [10].

There remains a point of interest concerning one-
dimensional (1D) intermittency, which will be helpful
when we leave J =0. It is easily determined that inter-
mittency, although striking when it occurs, is less likely
to be seen than the window of stability that it precedes
because its parameter window of occurrence is in each
case smaller than that of the stability window. In order
to study this point in detail, we note that regular bursts
having a preassigned number of iterates are unlikely to
occur until a value of p below s; at which there is a sta-
bility window of a periodic orbit which mimics period-3
behavior for the chosen number of iterates. We will refer
to such orbits as 3-mimics. The reason for the impor-
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FIG. 1. y, 3 (y,) in the trapping region of the logistic map
for u at an intermittent parameter value preceding the tangent
bifurcation to period-3 stability. Inset: The narrow channel
giving rise to regular period-3 bursts.
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tance of 3-mimics, despite their narrow u-stability ranges,
is that in these windows they replace the regular part of
the intermittent orbit, while the chaotic part vanishes.

To elaborate, we first investigate the symbolic dynam-
ics of 3-mimics. For this purpose we use an adaptation of
the recursive algorithm of Metropolis, Stein, and Stein
(MSS) [11], which finds the order in which the stable
periodic orbits occur, complete up to period n, as the pa-
rameter p of a one-hump map increases. The recursion is
on the period n, and they dubbed the complete set of such
orbits the U sequence. For the logistic family, no finite
periodic orbits exist as attractors other than the U se-
quence. In the MSS topological method, an orbit point is
only identified as to whether it lies to the left (L) or to
the right (R) of the map maximum, an orbit than consist-
ing of a string of R’s and L’s called its symbolic dynamics.
This dynamics is rooted in the topological importance of
the map maximum, or critical point. MSS realized that
the key to identifying the u order of stable periodic orbits
consists in a particular comparison of selected time-
reversed periodic orbits, or what they called legal inverse
paths (LIP)’s. For a given logistic map most points do
not have unique inverses, there being either zero or two
preimages of almost any orbit point. In particular, for
u=2.0, the parameter value for which the map fills its
square of definition in the (y,,y,+;) plane, further
identified as the onset of complete chaos, every point (ex-
cept the two fixed points) has two preimages, so that » in-
verse iterations produce 2" preimages of a given point,
and therefore 2" inverse paths of length n. A further in-
gredient is the occurrence of at least one periodic-orbit
point, in a stable periodic orbit of period n, whose image
is very near to the critical point, this being necessary in
order that the (common) slope at all stable periodic-orbit
points have a magnitude less than one. The direct pro-
cedure for finding LIP’s for period-n stable periodic or-
bits is to take the map for =2, and follow all possible
inverse orbits of the critical point for n —1 steps, creating
a set of candidates for, by definition, superstable orbits.
A LIP for a stable periodic orbit of period n consists of a
set of (n —1) R’s and L’s read and traversed from right
to left, such that its last symbol (i.e., furthest to the left) is
an R, and the orbit point that it corresponds to is the
furthest to the right of all (n —1) orbit points in the LIP.
This allows the last point in any LIP to be joined to the
central point, if u is decreased sufficiently from 2.0, thus
forming a stable periodic orbit. The required decrease is
smaller the further to the right is the last LIP point. The
symbol for the central point is not included because dur-
ing the parameter range of stability of every periodic or-
bit it varies from L to R or R to L, the superstable point
separating the two regions.

The MSS algorithm avoids the need for a separate
search for stable periodic orbits of each period. Its basic
step is to start with the U sequence complete up to some
small period such as 3 or 4 and to interject LIPs with
more symbols between each adjacent pair of LIP’s al-
ready present. This is done by comparing the “harmonic
extension” of the left-hand LIP of any pair with the “an-
tiharmonic extension” of the right-hand LIP. The
desired new LIP is the common left-hand end of the two
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sequences just defined. Here the harmonic of a LIP is
two copies of the LIP separated by an R if the LIP has an
even number of R’s, and by an L if the LIP has an odd
number of R’s, and the antiharmonic uses the alternative
separator. The harmonic extension is found by
indefinitely iterating the procedure for finding the har-
monic, and similarly for the antiharmonic extension. In
effect, the harmonic (which is a LIP) must lie to the right
of its originating sequence on the parameter line, and the
antiharmonic must lie to the left of its originator. The
antiharmonic is not a LIP but, as we now can show, can
generate LIP’s of interest. As an example, the sole
period-3 LIP is RL, its harmonic is RL (L)RL, and the
next stage in its  harmonic  extension is
RL(L)RL(R)RL (L)RL, where we have put parentheses
around the separator symbols. The antiharmonic of the
period-3 LIP is RL(R)RL, and the next stage in its an-
tiharmonic extension is RL(R)RL(R)RL(R)RL. 1t is
easy to see that the complete antiharmonic extension of
period 3 is RLR?LR?LR?. .., a periodic symbol se-
quence.

Rather than looking for the entire U sequence, we con-
centrate on the range of p just below the stability range
of period 3. We know that the U sequence, complete to
period 4, in our region of interest, is RLR,RL. A MSS
search between these LIP’s finds RLR? (5), where the
period of the related periodic orbit is in parenthesis.
Iterating this procedure, we now look between RLR ? and
RL, and find RLR2LR (7). Then in succession we find
RLR’LR? (8) and RLR’LR*LR (10). It is clear that
these LIP’s are all truncations of the antiharmonic exten-
sion of the period-3 LIP, and that this process can be
continued indefinitely. It finds periodic orbits having
ever longer periods with parameter stability ranges ever
close to that of period 3. These orbits have periods
3n+1,and 3n +2, n =1,2, ... (or LIP’s with 3n,3n +1
symbols). Once we pass the tangent bifurcation value of
u for one of these orbits, all stable periodic orbits occur-
ring before the period-3 tangent bifurcation have at least
as many symbols of the antiharmonic extension of the
period-3 LIP as that orbit. Truncations of the antihar-
monic extension of period 3 that would give periods that
are multiplies of 3 are excluded, because they are not
LIP’s. Further exclusions occur among possible precur-
sor orbits to higher period intermittencies and will be dis-
cussed in Sec. V. Table I shows the tangent bifurcation
values of u for the orbits that we have just described up
to period 41, and the widths of the stability windows of
these orbits. The occurrences of the precursor stable
periodic orbits are in accord with the € !/ behavior of
the average lengths of the periodic intermittent bursts,
and thus afford a microscopic view of that phenomenon.

A related point in phase space concerns the positions
of the orbit points of a 3-mimic as its period increases.
Because of their symbolic dynamics, the orbit points
clump in three groups related to the incipient intervals of
period-3 activity. Consider the superstable case: One or-
bit point must be y =0.0. As the period increases, ever
more orbit points crowd into the region that is reserved
for period-3 activity. In Table II we show the orbit
points in the central clump for superstable period 41.
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TABLE 1. Tangent-bifurcation (s,.3;) and window-
destroying (k,, ;) values of u, and window widths (Ap, 3) for
3-mimic orbits at J =0. Here n <3 means the orbit of period n
with the closest stability range of u below s; =1.75, the limiting
value in the table as n increases.

Period (n) Sp<3 hn<3 A[L,,<3
5 1.624 397 1.63336 0.008 96
8 1.711037 1.71142 0.000 39
11 1.732 001 1.732 049 0.000 048
14 1.7397164 1.7497278 0.0000114
17 1.7433374 1.743 3413 0.000003 9
20 1.7453194 1.7453211 0.0000017
23 1.746 5233 1.746 524 1 0.000000 8
26 1.7473107 1.7473112 0.000000 5
29 1.747 8549 1.747 8553 0.000000 3
32 1.748247 4 1.7482477 0.0000002
35 1.748 5402 1.748 5403 0.0000002
38 1.748 7646 1.748 7647 0.000000 1
41 1.748 9405 1.7489406 0.000 000 1

They move out of the period-3 region in time for the next
3-mimic to take a superstable position. We will refer to
this point in a later discussion of the case J > 0.

It is also of interest that, in accord with the numerical
findings of Lorenz near p=2.0, the parameter range hav-
ing some stable periodic attractor in the intermittent
range preceding period-3 stability is very small numeri-
cally. This explains why, in real and computer experi-
ments, the course of intermittency with parameter in-
crease never seems to be interrupted by other stable
periodic windows.

As a technical point it is worth noting that, because of
Singer’s theorem, the most straightforward numerical
method for finding the stability windows of periodic or-
bits at J =0 is to calculate the Lyapunov exponent from
any starting point in the trapping region as a function of
p. Because stability windows tend to be narrow (see
Table I), in order to find one it is helpful to have some
idea of its width as well as of its (approximate) location in
U, the latter being available from its MSS sequence by a
rapidly convergent technique [12].

III. SOME GENERAL FEATURES OF J >0 MAPS

There are many clues to the changes that are found in
intermittency as J is increased from zero. Although there
is overlap in their contents, they all represent different in-
sights, and as such are potentially useful in studies of ever
more complicated maps. We consider events both in pa-
rameter space (J,u) and phase space (x,,y,). These are
static plots. It would be even more useful to make a
four-dimensional (4D) plot of (x, ;,¥, +1;X,,y,) which

TABLE II. Orbit points of the period-41 3-mimic orbit at
(J,)=(0,1.748 940 483) associated with the central period-3
orbit point.

0.000 000 0.033227 0.043 326
0.050376 0.056 386 0.062212
0.068471 0.075 862 0.085472
0.099 380 0.122 287 0.166 959
0.277270 0.653 043
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would correspond to the extremely revealing plot of y,
vs y, for the quadratic map, which enables us to trace the
time evolution of any starting point by eye, but human
limitations intervene. As proved by Holmes and Whitley
[6], the saddle-node loci in parameter space, p=s, ;(J),
for every n and k, are continuous curves from J =0 to 1,
although each line may cross both itself and all of the
others. Many other important loci exist in parameter
space, signifying other important topological dynamical
events, among which are period-doubling bifurcations,
and different homoclinic and heteroclinic bifurcations.
Figure 2, taken from Ref. [6], shows plots of some impor-
tant bifurcations that appeared in that reference. We will
have occasion to introduce a further set of homoclinic bi-
furcations that is crucial to our particular concern with
the evolution of intermittency. Before doing this, it is
useful to sketch the underlying concomitant events that
occur in the phase space.

We are concerned with the stable and unstable mani-
folds that accompany every periodic point whether or not
it is stable. The limiting 1D case has simplifying features,
the connected kernels of which are the one-hump feature
of the map and its double-valued inverse. The 1D map,
when limited to the portion of the abscissa y, for which
— A<y, <y, +10 is the analog of the important branch

of the unstable manifold (UM) of the unstable fixed point
of the Hénon map at (x,y)=(—A,— A), where
A=)1+J +[(1+J)*+4u]"?). [The other branch of
the UM lies outside the trapping region for all (J,u) and

9583 s 4
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FIG. 2. Some bifurcation curves for the Hénon map. (a)
Saddle-node bifurcations (s), and period-doubling bifurcations
(f), for periods n =7. (b) Homoclinic bifurcation curves. (This
figure is reproduced from Ref. [6] with the permission of the au-
thor and of the Royal Society of London.)
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goes monotonically to infinity.] It is referred to below in
a discussion of homoclinic tangency. Note that, for all J,
the UM is intimately connected to the location of the
strange attractor(s) which exist for a finite measure of pa-
rameter values. At J=O0 the stable manifold (SM) of
(— A, — A) is just an infinite horizontal line through that
point, and an infinite line through the point (+ 4, + 4).
These ““join at x — + c0.”

Once we leave J =0, a profound change takes place:
The map is invertible, the inverse mapping being given by

X =L/ =Yy 417 %0 41)y Y =Xp i1 s

where the factor 1/J shows explicitly why all SM’s of
fixed and periodic points are horizontal lines for J =0.
The SM of (— A4, — A4) is the border of the trapping re-
gion. The UM of (—A4,— A4) is a curve which, for
w>J —J12(1+J), a value not far above the saddle-node
value s,(J)=—(1-+J)?/4, spirals around the only other
fixed point (+B,+B) an indefinitely large number of
times, or past homoclinic tangency follows an even more
tortuous  path. Here B=({)(—(1+J)+[(1+J)
+4u1'?). The UM has many critical points (i.e., maxi-
ma and minima). Singer’s theorem no longer applies be-
cause each of many critical points may harbor a periodic
orbit and its BA, and so multistability is the order of the
day. The extreme case is at J =1, for which, although
one cannot speak of attractors and BA’s, there is an
infinite number of elliptic island chains for the largest
measure of values of u for which a trapping region exists.
The occurrence of multistability and the relation of this
to intersections, or not, of various invariant manifolds is
closely tied to the changes that occur in intermittency.
For the most part we will be interested in very small posi-
tive values of J, which will afford us some simplification
because of similarity to the case J =0. However, some
understanding of the complex features of the bifurcation
curves in Fig. 2 is helpful because these affect the course
of intermittency associated with various periodic orbits.
Just as the trapping region is bounded by the SM of
(— A,— A), so each (n,k) BA is bounded by the SM’s of
the unstable periodic-orbit points on its boundary. The
vagueness of this definition can be avoided by treating J
values appropriately close to zero, thus avoiding
metamorphic basin boundary jumps [13,14]. With this
restriction, the bounding SM’s belong to the unstable n-
periodic-orbit points which appear at the (n,k)-saddle-
node bifurcation. Just as BA’s are formed at saddle-node
bifurcations, so BA’s are destroyed at heteroclinic bifur-
cations or tangencies. Some related homoclinic tangency
or bifurcation lines are seen in Fig. 2(b). We refer to
these as & type to distinguish them from another group
that will be introduced below. In particular note that a
group of such loci, or lines, known as a homoclinic fan
leave the point (u,J)=(2.0,0.0) [6]. This point is known
in the 1D case as (the first) Misiurewicz point [4], a limit-
ing endpoint for a very large number of saddle-node bi-
furcations, which is also the upper limiting parameter
value for the existence of a trapping region. It is clear
that a Misiurewicz point is very degenerate from a topo-
logical point of view, and that some of the degeneracy is
removed when J>0. To be clear about definitions, a
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homoclinic tangency or bifurcation occurs at a parameter
pair at which the SM’s and UM’s of a fixed point or
periodic point are tangent, and a heteroclinic tangency
occurs at a tangency of a SM and a UM of distinct
periodic-orbit points. Parameter pairs of a particular
tangency vary along curves in parameter space which are
continuous from J =0 to 1. Such tangencies were first in-
troduced in the study of Hamiltonian, or area-preserving
systems [15]. The relative simplicity of the very large dis-
sipation limit (J =0) can be looked at as the gradual de-
generation of A-type homoclinic tangency as J decreases
from 1 to O so that, at J =0, it is confined to the Misi-
urewicz points which only occur at the set of parameter
values at crises, at which strange attractors exist [16].

If Figs. 2(a) and 2(b) were superposed, one would no-
tice that many saddle-node bifurcation lines cluster in the
vicinity of various homoclinic tangency lines. We will
concentrate on the first (i.e., leftmost) homoclinic line
h,(J), and the last homoclinic line 4,(J), leaving the
Misiurewicz point (0,2) [4]. We notice that a set of
saddle-node bifurcation lines: s3(J), s4(J), 55 3(J), 56 4(J),
and 5, ¢(J), and an infinite number of others, one for each
period, leave J =0, and follow ever closer along the
course of h;(J) as the period increases. In each case the
saddle node s, x(J) is the last saddle node s, ,(J) of
period n in the MSS sequence (at J =0), with symbol se-
quence RL" 2. We note here, for future use, that the
work of Biham and Wenzel [17] and some of our own cal-
culations support the conjecture that the symbolic dy-
namics of every periodic orbit can be taken the same for
all real, and even complex! J and u, when used with the
Biham and Wenzel algorithm for finding periodic orbits,
assigning R =+1 and L = —1. This despite the fact that
for J >0 the MSS ordering of symbol sequences for con-
stant J is only fortuitously valid. At J =1, the s, ¢(J)
have all crossed 4 ,(J), and occur in inverse periodic or-
der with increasing J. The crossing are essential because
the nature of the area-preserving limit requires that
h,(1)=s,(1), and no trapping region exists for pu <s;(1).
The intuitive reason that these orbits remain close to
h,(J) is that the orbit points follow clockwise around a
topological circle, as seen in Fig. 3(a) in a very similar
way to that in which the homoclinic tangency points
proceed at h(J), as seen in Fig. 3(b). Each of these sad-
dle nodes occurs at a resonant bifurcation, a typical
area-preserving phenomenon, and its BA survives for a
range of p that is much larger than one’s expectations
from its behavior at J =0 [5-7]. The reversal of the u
order of these orbits between J =0 and 1 can be under-
stood on dynamical grounds in terms of the struggle be-
tween nonlinearity and dissipation. In the area-
preserving case there is no dissipation, and an orbit in
which a small change occurs in one time step is similar to
a long-wavelength mode of a string. For example a
period-9 orbit completes a circle in nine time steps while
a period-3 mode goes around three times in nine time
steps, like a string mode with three nodes. By contrast,
at J =0, dissipation is strong and only to go around a cir-
cle one time in a large number of steps requires very large
nonlinearity to counteract the very large dissipation, ac-
cording to Schuster’s driven damped rotator model of the
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FIG. 3. (a) The MSS construction of the periodic-orbit points
for (n,k)=(6,4). (b) A schematic diagram showing the first
homoclinic tangency of the stable and unstable manifolds of the
unstable fixed point. Note that the positions of the tangency
points resemble those of the periodic-orbit points in Fig. 3(a).

Hénon map [3].

Now, for contrast, look at the last homoclinic tangency
h,(J), which for all J just precedes the formation of a
complete Smale horseshoe [18],[6] which destroys the
trapping region. For each period n, the saddle node
which closely follows this homoclinic line is the next-to-
last one in the MSS sequence: s, ¢ _(J). The symbol se-
quence in this case is RL" “*R. Figure 4(a) shows a typi-
cal orbit among this set, and Fig. 4(b) shows the quite
similar last homoclinic tangency. Because of the Smale
horseshoe formation at 1(J), none of these saddle nodes
can cross it. The dynamical reason for the extremely
large difference 4 ,(1)—h,(1)=6.8 is not so clear. Tenta-
tively one may say that putting in a single loop of length
2 into a long small-amplitude loop creates a large tension
in an area-preserving system, while for a dissipative sys-
tem it does not change the important largest amplitude
by very much, as long as the orbit is sufficiently long.

Homoclinic tangencies play equally important roles for
higher-period BA’s, with one important difference. In
the period-1 case, when considering A 1(J), the entire
trapping region is at stake, because a point outside of it

will rapidly approach the ever present attractor at
infinity. In this connection we noted above that the other
half of the unstable manifold of (— 4, — A4) goes straight
to infinity, so that it can never return and cause a homo-
clinic tangency with the other half of the stable manifold.
As a generalization, A-type homoclinic tangency, for a
periodic orbit with n1, always involves the half of the
UM of an unstable periodic-orbit point of period » that
lies in the n-BA. If the n-BA is created at a saddle-node
bifurcation, and n+1, then the other half of the UM
varies independently, and unless the n-BA is surrounded
by the basin at infinity (which can happen once the 1-BA,
or some other enveloping BA, no longer exists) this
second UM branch may also take part in a homoclinic
tangency or intersection. We call this an 4'-type homo-
clinic tangency. For example, many higher-period BA’s
of period n which are born at saddle-node bifurcations, at
least at values of p for which the period-1 BA exists (to
be given below), have the other halves of the unstable
manifolds of the unstable period-n points existent in the
period-1 BA. Because of the overriding attracting prop-
erties of the unstable manifold of the point (B, B) intrin-
sic to the Hénon map for any parameter pair, the period-
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FIG. 4. (a) The MSS construction of the periodic-orbit points
for (n,k)=(6,3). (b) A schematic diagram showing the last
homoclinic tangency of the stable and unstable manifolds of the
unstable fixed point. Note that the positions of the tangency
points resemble those of the periodic-orbit points in (a).
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n unstable manifolds approach the (B,B) UM in the
long-time limit. A particular case of some relevance for
our treatment of intermittency in the simple case of
period 3 is shown in Fig. 5. We pick a parameter pair
(0.2,1.33) that is not near intermittency because it shows
the approach of the two UM’s of concern without the ex-
tra complications inherent in intermittency. Note that
53(0.2)=1.32 and that at (0.2,1.33), 4 =1.9, B =0.7,
and the period-3 BA contains a period-3 point attractor

FIG. 5. (a) The stable and unstable manifolds of the period-3
unstable periodic-orbit points marked a,f,y, which lie on the
boundary of the period-3 basin of attraction. Here
(J,;)=1(0.2,1.33). The stable period-3 orbit points are at the
apparently abrupt ends of the parts of the unstable manifolds in
the period-3 basin of attraction. Point P is a period-2 fixed
point, and is close to the period-1 unstable manifold which is
gradually approached by the period-3 unstable manifolds. (b) A
blowup showing the wrapping of the period-3 unstable manifold
branches around point P in (a). The linear magnification (b) rel-
ative to (a) is 312.5 in both directions.

at successive cyclic pairs of the values
(—1.01883,—0.014721,1.49753). Figure 5(a) shows
the important parts of the period-1 and period-3 BA’s in
a phase plane plot (x,,y,) with its center at (0.0,0.0).
The fixed point (— A, — A4) is at the lower-left-hand
corner. The period-3 unstable periodic points are succes-
sive cyclic pairs of the set of three values
(—0.94155,0.14397,1.497 56). They are marked a,f3,7,
and the stable and unstable manifolds through them are
noted. The region inside the innermost stable manifold
branches is the main part of the period-1 BA and con-
tains a period-2 point attractor at the points (x,,y,)
given as (0.1,1.1) in either order. The period-2 attractor
points are surrounded by the UM of (B,B). The parts of
the unstable manifolds of «,,7 in the period-1 BA are
gradually converging to the UM of (B,B). Figure 5(b)
shows the region near the rightmost period-2 attractor
point [labeled P in Figs. 5(a) and 5(b)] magnified in both
directions by factors of 312.5. The period-2 attractor
point at (1.1,0.1) is in the center of the figure. The outer-
most curve originates at point «, the next at 3, and the
next at ¥. The inner folds of these are not distinguishable
from each other or from the UM of (B,B). All of the
period-3 UM’s cycle clockwise, but the entire group ap-
pears to cycle counterclockwise about the period-2 point
because the UM of (B, B) cycles counterclockwise. This
is consistent with the cycling of orbits in island chains in
the area-preserving limit. As u increases, the UM of
(B,B) develops folds preliminary to homoclinic tangency
with the (B,B) SM, and, after that tangency, eventually
approaches and intersects the SM’s of «,,y; concomi-
tantly, the homoclinic tangency h3(J) must occur. This
shows the conditions in which homoclinic tangency and
intersection of the period-3 manifolds develops. Homo-
clinic intersections of this type were not discussed in Ref.
[6], but are crucial to a discussion of intermittency for
Hénon maps. They are also the key to a discussion of
metamorphosis, or discrete change in a basin boundary
[13,14]. We define the value of p for which homoclinic
tangency of the kth MSS orbit of period n occurs in pa-
rameter space as h, ;(J). We stress that this is a homo-
clinic tangency involving the branches of the UM’s of
period n in the surrounding BA out of which the period-n
BA is sculpted. It is distinct from 4,, ; (J), which involves
the UM branches that leave the period-n unstable
periodic-orbit points within the period n-BA (when this
BA is stable). We will see that the existence of the locus
h, 1 (J) is not guaranteed for all values of J.

IV. INTERMITTENCY OF PERIOD 3

A. Computational results

As a first, and arguably the most important, case of
type-I intermittency, we study that related to the ex-
istence of a period-3 attractor. At J =0 the standard pic-
ture, described in Sec. II, is that for most values of € near
and preceding s; there is a strange attractor, but as €—0,
its Lyapunov exponent decreases to zero. We can relate
this to the existence of homoclinic intersection of the h’
type at J =0. Figure 6 shows the UM of (— A4,— A4) at
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FIG. 6. The intersection of the period-3 stable manifold
branches with the period-1 unstable manifold at
(J,;)=1(0,1.75). These intersections explain why bistability of
the period-1 and period-3 basins of attraction is not possible at
J =0. Elaborating on accepted terminology, the removal of the
barrier to bistability at J =J*(3) might be called crisis resolu-
tion.

J =0 for p=s,=1.75. The UM of (B,B) lies along the
same parabola, and if there is a strange attractor it must
be dense along this UM. We also mark the three period-3
fixed points on this manifold, and through each of them
we draw a horizontal line which is part of its SM. Cer-
tainly each horizontal line crosses the UM parabola. If
period-1 and period-3 BA’s were bistable, this crossing
could not occur because the period-1 BA has a strange at-
tractor in it just preceding s;, and could be expected to
continue to do so as u increases. Because the period-3
UM wraps tightly around the (B,B) UM, this means that
period-3 A’-type homoclinic intersection exists. In com-
bination with the existence of a finite-u interval of stabili-
ty, Au(3)=h;—s; of the period-3 BA before h; occurs,
we can see why the period-3 BA destroys the period-1 BA
when p=s;. As J increases, s;(J) decreases because it
follows along with A,(J) so that it can take its rightful
place as a resonant bifurcation evolving within the
period-1 elliptic basin at J =1, starting at py=s;(1)=1.0.
Concomitantly the folds of the (— A4,— 4) and (B,B)
UM’s separate in such a way that the 4’-type homoclinic
intersection is gradually withdrawn leading to a homo-
clinic tangency h45(J), and then withdrawing all contact
of the UM and SM of period 3. The smallest value of J at
which A5(J) occurs is J*(3)=0.001 15. This is one coor-
dinate of a codimension-2 point in parameter space. Us-
ing the result of Hitzl [19], 55(J)=(1)(7J2—10J +7), the
corresponding value of u is 1.74713. We have estab-
lished numerically that h3(J) exists for J*(3)=<J <1.0.
This is done by plotting the two manifolds and adjusting

p and J to the five-place accuracy shown here, so that
tangency just exists. An analytic approach to the tangen-
cy problem would be very difficult because of the mul-
tivaluedness of the manifolds. The course of h5(J) is
complicated and will be discussed elsewhere. In Fig. 7,
we show s4(J), h3(J), and h5(J) in the parameter plane
for a range of values of interest for the development of
type-1 period-3 intermittency. The numerical values of
interest are noted, but the values are not to scale in this
qualitative figure because they are clumsily disparate in
size. Note the crossing of h;(J) and hj5(J), at the
codimension-2 point defined as J'(3), which will be dis-
cussed below. For J shown between 0.0 and 0.02, the
period-3 BA  exists with some attractor for
s3(J)=pu=h;(J). We now turn to the form that period-3
intermittency takes in this range of J.

The numerical tools that we use to study period-3 in-
termittency for each Hénon-map subfamily with J >0 are
the same as those used above for J =0, namely the time
trace, the Lyapunov exponent, and the orbit density of an
initial point which starts in the period-1 BA. We have
found that a very satisfactory initial point for all of these
calculations is one very close to (B, B); such a point is un-
likely to be in any BA other than that of period 1. Be-
cause we are only interested in the long-time behavior, we
always ignore initial transients by preiterating for any-
where between 10* and 10° iterates. For J <J*(3), the
results differ only in part from those at J =0: the time
trace continues to show an increase in the fraction of reg-
ular behavior as €e=s4(J) —u—0, with the average length
of a regular burst varying as € !/2, and the Lyapunov ex-
ponent varies as €'/2. Furthermore, for a reason soon ob-
vious, the parameter range in which the intermittency
occurs decreases. The significant harbinger of important
change is that the orbit density of the intermittent peaks

.01813

00115

1.75 1.79

FIG. 7. Bifurcation lines relevant to the stability conflict be-
tween period-1 and period-3 basins of attraction (BA’s). Other
(n,k) BA’s are ignored. The period-3 BA is stable between s5(J)
and h3(J). The period-1 BA is stable to the right of #;(J), and
to the left of A5(J) if J>0.00115, and to the left of s;(J) if
J <0.00115. Intermittency potentially occurs immediately to
the left of this line, indicated by dashes, defining the destruction
of the period-1 basin, but only if the period-3 basin exists
(J <0.018 13). In the shaded region, the period-1 BA has been
swallowed by the period-3 BA.
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gradually becomes more asymmetric as J increases.
However, the integrated fractional density under each of
the three peaks remains unchanged for parameter pairs
correspondingly close to s;(J). Note that, for J >0, we
consider a 1D density: the orbit projected on x, =0. (We
could as well have projected the orbit on y, =0 because
of the equation x, ,;=y,.) In two dimensions, the orbit
density is expected to be fractal along a direction perpen-
dicular to the main UM with a very narrow total width.
The numerical results for this more elaborate density, al-
though of theoretical importance, are not of interest in
the present discussion; our concern is a comparison with
the invariant density in the limit J=0. We have as-
sumed, along with most physicists, that SA’s exist for the
2D case, and that their properties parallel those of the
better-established 1D SA’s, including, in this case, the ex-
istence of an invariant 1D projected orbit density.
Operationally the 1D density may be thought of as a sum
of contributions from all of the fractal branches of the 2D
density.

More interesting changes occur for J >J*(3). Figure 8
shows the time traces of orbits for the three
parameter  pairs  (J,u)=(a) (0.0011,1.7472510),
(b) (0.0012,1.747004), and (c) (0.0015,1.746 352). There
are three “time lines” (horizontal) in each diagram. The
solid lines on the sides of each time line indicate the coor-
dinate value (vertical) of zero. In each case an increase of
1075 in u will destabilize the period-1 BA. The continu-
ing decrease in regular period-3 behavior as J increases
above J*(3) is apparent. Figures 9(a)-9(c) show the
Lyapunov exponent of an orbit which starts in the
period-1 BA as a function of small € for the same values

(a) ¢

(b) t

(<) t

FIG. 8. (a)-(c) The time traces of orbits for (J,u)=(a)
(0.0011,1.747 251), (b) (0.0012,1.747 004), and (c)

(0.0015,1.746352). In all cases, €=10"9,
€=s3(J)—pu, while in (b) and (c) e=h3(J)—pu.

where, in (a)

of J as in Fig. 8. We see that the Lyapunov exponent, a
statistical quantity undergoes a first-order rather than a
continuous-phase transition when € goes through zero
and J>J*(3). In addition, one begins to see what is
more apparent at still larger values of J, that the transi-
tion is then to a negative value of A, rather than to A=0.
Note that in all three cases A~0.375 when €~0.000 75.
Finally, the smallest values of A for e=2X 10" are ap-
proximately 0.04, 0.20, and 0.30, respectively. Figures
10(a)-10(c) show histograms of the change in the invari-
ant orbit density of the y (or x) coordinate near the cen-

0.5 : —
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A
0.0 | v ]
L J=0.0011
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1.747245 7 1.747255
0.5 —
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0.0 |
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FIG. 9. (a)-(c) The Lyapunov exponent A;(x) as a function
of p for (small) €, and the same values of J as in Fig. 8. The
change from a continuous to a first-order phase transition for
A;(u) when J exceeds 0.001 15 is apparent.
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FIG. 10. (a)-(c) Invariant orbit densities for the y (or x)
coordinate near the central period-3 peak for J=0.0, 0.001,
0.0015, and the illuminating value €~10"°. In each of these
plots the normalization is to the largest histogram value, so rela-
tive areas are not evident.

tral period-3 peak for J=0.0, 0.001, and 0.0015, and
€~10"°. In each case the y range shown is divided into
2400 equal intervals. The gradual skewing of the peak as
J increases is apparent. Because each peak is normalized
to its largest vertical value, the decrease in peak area for
J>J*(3) is not obvious. To remedy this defect, we note
that for J =0.0, 0.001, 0.001 2, and 0.001 5, and e=10"5,
the area ratios are 2.82:2.81:1.82:1.37. The reasons for
these changes can all be traced to the consequences of the
codimension-2 point (J,u)=(J*(3),s;(J*(3))). Most of
the arguments are qualitative, depending upon extrapola-
tions of the arguments in Secs. II and III.

B. Explanation in terms of the codimension-2 point
(J*(3),s3(J*(3)))

The codimension-2 point (J*(3),s5(J*(3))), while not
as degenerate as a Misiurewicz point, still is a limit in pa-
rameter space of a set of important topological events.
The results of our topological arguments for J =0, and
their numerical continuation for J >0 show, that the 3-
mimic saddle nodes limit at u=s4(J) for J <J*(3). For
J >J*(3), there is an unexpected split in the behavior of
the 3-mimic saddle nodes: Those with periods of the
form 3n +2 continue to limit at the curve u=h%(J) up to
high values of J. We have checked this up to J =0.95
and periods up to 23. Those with periods of the form
3n +1 cross h3(J) in order of decreasing n as J increases.
The codimension-2 point acts as the high-» limit for the
3n +1 saddle-node crossings. This limiting behavior is
probably a hallmark of its codimension-2 character. A
number of the small-n crossings occur above J'(3). The
smallest-period crossing below J'(3) is that of period 22
(i.e., n =7) near J =0.018. The crossing of period 7 is
near J =0.2. Note that each 3n +1 saddle node that has
crossed h3(J) has also crossed an infinite number of
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3n +2 saddle nodes. We do not completely understand
this behavior in terms of manifold crossings. We merely
note the suggestive topological fact that the LIP’s of
3n +1 orbits are even in R while the LIP’s of 3n +2 or-
bits are odd in R. Figure 11 shows the same bifurcation
lines as in Fig. 7, supplemented by saddle-node bifurca-
tion lines of some of the 3-mimics and some of the cross-
ing points of 3n +1 3-mimics. This time the values are to
scale. In Table III, we show approximate values of s, (J)
for a few 3-mimic (3n +1,3n +2) pairs for several values
of n. In each case we use a value of J not far above that
for which the 3n +1 saddle node has crossed hj3(J).
Most of our computer results for intermittency can be ex-
plained on this basis.

(1) Why intermittency occurs at h3(J) rather than at
s3(J) : In Fig. 11, we see that, as J increases above J *(3),
the 3-mimic saddle nodes abandon s;(J) and follow ever
closer to h3(J). Even though some of the 3n + 1-type 3-
mimics cross this line, a discontinuity in intermittent
behavior is to be expected upon crossing h3(J) as a
modification of the €'/? behavior of the Lyapunov ex-
ponent in the period-1 BA observed when J <J*(3).
Thus there is a dynamic reason for period-3 intermittency
to be associated with the temporary destruction of the
period-1 BA [at A%(J)] rather than with the creation of
the period-3 BA [at 55(J)], these two events no longer be-
ing simultaneous with parameter variation when
J >J*(3). We believe the reason for this is the same as
the reason that some orbits follow close to 4 ,(J) and oth-
ers follow close to }71(.]), as discussed in Sec. III. Orbits
which follow close to s;(J) for all J have symbolic dy-
namics resembling that of multiples of 3. The ones we

17 20 232629 175

FIG. 11. The same bifurcation lines as in Fig. 7, but now to
scale, and supplemented by saddle-node bifurcation lines of
several 3-mimics, and points at which two 3n + 1 3-mimics cross
h3(J). The latter are labeled by their periods, 28 and 22.
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TABLE III. Saddle-node bifurcation values of p for 3-mimic
pairs (3n +1,3n +2), compared to homoclinic values u=~h(J).
The crossings of A3(J) by the 3n +1 saddle nodes shown are
crucial to an understanding of the variation of the Lyapunov ex-
ponent with J above J *(3).

J  Period (n) s,(J)  Period (n)  s,(J) h3(J)
0.2 7 1.991 904 8 1.973922 1.979 832
0.02 19 1.749 31 20 1.74915 1.74927
0.014 28 1.74543 29 1.74532  1.745386

are concerned with here are truncations of the antihar-
monic extension of period 3, excluding the multiples of 3
(none of which are LIP’s). It is dynamically reasonable to
expect that if s5(J) goes upwards to the left, then h3(J)
will go upwards to the right, if only because the 3-mimics
which limit at it have orbit points that more nearly
resemble the tangency points of 4,(J) rather than those
of h;(J) (see Figs. 3 and 4). Between s4(J) and h3(J), we
find that the 3-mimic BA’s are bistable ‘with the period-3
BA, probably because their qualitatively different symbol-
ic dynamics does not allow any intermittency in the tran-
sition between them. It is not clear whether this relative
stability continues to hold between #5(J) and h5(J), but,
as remarked in Sec. II concerning J =0, the effect on in-
termittency will be minimal because the parameter stabil-
ity ranges of the 3-mimic BA’s are very small.

As far as calculation is concerned, in the parameter
range of concern we are fortunate that the period-1 BA is
unstable with respect to each of the 3-mimic-period BA’s,
so that an initial point near (B, B) iterates to the attractor
in the 3-mimic BA while that BA is stable. This is con-
sistent with the idea that, as dissipation is increased from
zero, high-period attractors approach their limiting dissi-
pative behavior, defined as qualitatively similar to the
behavior at J =0, after fewer cycles: We assume that the
dissipation per cycle must reach a critical value of order
1 to achieve limiting dissipative behavior, and the dissipa-
tion per iteration is constant on the average. Thus we
usually find that J*(n,,k;)>J*(n,,k,) if n;>n,, and
the symbolic dynamics of the two orbits are similar.
(Two examples of “‘similar’ are period-3-mimics, and the
last orbit of each period). Some indication of the irregu-
larities in J* values caused by k dependence appear in
Sec. V. However the small parameter range of stability
of the high-period BA’s makes them hard to find even
with a Lyapunov exponent search. A search using the
method of Biham and Wenzel [17], which does not de-
pend upon convergence of the Hénon dynamics of the or-
bit in question, is also not easy to apply when the orbit in
question is stable, but is probably the best method avail-
able.

One result of the s5(J),h5(J) separation is that, if p is
varied slowly from a point to the left of s5(J) to a point to
the right of A5(J) and then reversed back to its starting
point, hysteresis is likely to occur: An initial point will
most likely be in the period-1 BA when s;(J) is crossed,
and will stay in that BA until 4#5(J) is crossed. When u
decreases from a value between h(J) and h,(J), a return
to the period-1 BA will not occur until s5(J) is crossed.

The hysteresis range is not great; it must be less than the
p width of the period-3 BA, which is about 0.4.

(2) Why there is a decrease of the Lyapunov exponent to
a negative value when the period-1 BA is destroyed : The
explanation is contained in  Fig. 11. For
J*(3)<J <J'(3), we see that s;(J)<h3(J)<h;(J), and
so at the transition the attractor in the period-3 BA can
be anything from a period-3 orbit to a period-3 strange
attractor. This is reflected in the first value of the
Lyapunov exponent seen when the period-1 BA is swal-
lowed by the period-3 BA.

(3) Why the u range of intermittency decreases as J in-
creases : In accord with the idea alluded to in Sec. I, Fig.
11 shows that the u range of intermittency decreases with
increasing J, because each 3-mimic saddle node ap-
proaches ever closer first to s;(J) and then to A 3(J) with
increasing J, and it is the distance from a given 3-mimic
to h5(J) that determines where the Lyapunov exponent
lies on the €'/2 curve.

(4) Why there are changes in the orbit density : The ex-
istence of h5(J) for J>J*(3) means that, because of its
intimate proximity to the period-3 UM, the (B,B) UM,
along which the strange attractor in the period-1 BA
ranges, no longer intersects the period-3 SM, which acts
as the period-1-period-3 basin boundary; thus period-
1-period-3 bistability exists for s;(J)<u <h3(J), with
hysteresis, as long as h5(J) <h;(J). Three further points
must be explained: the shortened regular bursts in a time
trace, and the decreased intensity and increased asym-
metry of the orbit density peaks, the latter for all J > 0.

We address the last point first. In Fig. 12, we show
stable and unstable manifolds of the central period-3
unstable-orbit point near that point (labeled Q), for
(J,)=(0.00115,1.747 127 3), a point very near to the

L 11.7461
Q
Y 1.7456
L L 1 ‘I, 1 1 L
0.0 0.0638

FIG. 12. Stable and unstable manifolds of the central
period-3  unstable-orbit point near that point, for
(J,u)=(0.00115,1.747 127 3). Here Q is the central period-3
unstable-orbit point.
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codimension-2  point, (J*(3),s3(J*(3))=h3(J*(3))).
The nearly horizontal line that slants slightly downwards
to the right is the stable manifold, while the other lines
belong to the branch of the unstable manifold in the
period-1 BA. The vertical scale has been magnified by a
factor of 1000, and the horizontal scale by a factor of 30,
compared to a plot at the scale of the original equation.
Consideration of small variations in this diagram can ex-
plain many features of maps near the codimension-2
point. This parameter pair is very near to several param-
eter  pairs: (@ J=0,u=175; (b) J=0.0007,
©n=1.7482509; (c) J=0.00115,4=1.7471274; (d1)
J =0.002,u=1.745007; and (d2) J =0.002,u
=1.7455070. All cases except (d2) are at period-3
saddle-node bifurcations. (d2) is a point of A’ homoclinic
tangency. Among these, A’-type homoclinic intersection
exists in (a) and (b), resulting in the SM crossing both
visible branches of the UM. The homoclinic tangency of
(c) looks just like the figure, while in (d1) homoclinic
tangency has not been reached and the SM will appear
above the central UM lobe. The right-hand piece of the
UM has a very large number of unresolved branches, one
of which must start at the periodic-orbit point. Consider
case (d). The period-3 manifolds come into existence in
(d1). By the time we increase u from (d1) and reach (d2),
the BA’s of many 3n +2 3-mimics and many 3n +1 3-
mimics will have come and gone, all bistable with the
period-3 BA during their tenures of stability. It can be
verified numerically that the images of an initial point
near but below the critical point of the (B,B) UM, at the
center of the diagram, all visually lie along the period-3
UM, but to the right of the period-3 orbit point. Of course
the (B,B) UM and the existent 3-mimic UM’s are visual-
ly indistinguishable from it, if only because of the very
small value of J. Thus when a particular 3-mimic is
stable, successive points lie on different branches of the
3-mimic UM, but all to the right of the period-3 fixed
point. In this way we preserve bistability of the period-3
and 3-mimic BA’s. In this way we also determine that
the Fraser-Kapral resonance curves are asymmetric, with
no peaks to the left of the period-3 unstable periodic
point. The increased downward slope of the (B,B) SM as
J increases, and the approaching homoclinic tangency
causes the asymmetry of the orbit density to gradually
build up between J =0 and J *(3).

We do not have a straightforward dynamical explana-
tion of the shortening of regular bursts and the concomi-
tant discrete jump in the Lyapunov exponent of the
period-1 BA when u=h}(J), where “dynamical” means
in terms of manifold intersections. We find that all of our
numerical results are in.accord with the rule that, for a
given J>J*(3), the longest regular burst of period-3
behavior as €—0 is approximately determined by the
period of the lowest 3n + 1-type 3-mimic saddle node that
has crossed u=~h3(J). This will correlate with the extent
to which the Lyapunov exponent has decreased toward
zero at the transition.

V. INTERMITTENCY OF OTHER PERIODS (n,k)

The scenario we have presented for the changes in in-
termittency that are related to the onset of the period-3 u
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window of stability [=Au,;(J)], and occur for
0=J =J'(3), has analogs for each saddle-node bifurca-
tion of type (n,k). The analog are qualitatively complete
in but few cases, and most of these are not the most im-
portant ones, judged by the criterion that Ap, ,(J)
should be large enough that noise in the control parame-
ter is unlikely to interfere with observation of the expect-
ed intermittency. Any such criterion is arbitrary. The
p-stability width of the entire trapping region at fixed J is
between 2 and 7, Au(3)=0.04, and we must remember
that intermittency becomes obvious in a u width of about
0.1Ap, ,(J). We will set a fine limit Ay, ,(J)=0.001 on
observability, which includes surprisingly few (n,k) com-
binations. In addition, we will discuss intermittency for a
few of the 3-mimic orbits because of their relation with
period-3 intermittency, even though their 4 windows are
very small. In general, increasing the period n decreases
Ap, «(J), as does increasing k, where, for a given n the
different k are in the MSS order of increasing values of
s,k For many orbits, Au, ,(J) decreases with increasing
J, in some cases by a factor 10 or more before one reaches
J'(n,k). We have not found any obvious simple scaling
of Au,,  (J) with n or k.

There are relations between the values of J*(n,k) and
J'(n, k) for different values of (n,k). These appear to fol-
low scaling rules that are generalizations of those worked
out for a class of 2D maps by Chen, Gyorgi, and Schmidt
[20], and will be discussed elsewhere. Most of these re-
sults are only of theoretical importance. In Table IV, we
note one such result, relating J*(3) and J*(6,1), for
which Ay, ,(J) is fairly large.

Before discussing the numerical results, we mention a
change in the symbolic dynamics of (n,k)-mimics from
that of 3-mimics, as it affects intermittency. In Sec. III,
we pointed out that all truncations of the antiharmonic
extension of the period-3 LIP that are not multiples of 3
are LIP’s, and so have parameter windows of stability
that limit on s; from below. Because such orbits, when
stable, replace intermittent orbits passing very near to the
critical points of the third iterate of the map, their
saddle-node parameter values in combination with their
periods are good benchmarks of the €!/2 behavior of the
Lyapunov exponent. The 3-mimics continue to be impor-
tant for J >0, as discussed in Sec. IV, and shown in Fig.
11. In generalizing this result to intermittency of the
(n,k) orbit, modifications must be made in the symbolic
dynamics calculation of (n,k)-mimics. The result is that,
whereas all orbits of periods 3n +1 and 3n +2 for all
positive integers n that are truncations of the antihar-
monic extension of period 3 are 3-mimics, in the (n,k) in-
termittent range of u only some of the orbits of periods
nm +p, for m any positive integer, and O <p <n, having
symbol sequences which are truncations of the antihar-
monic extension of the (n,k) LIP, are LIP’s; some p’s are
not allowed. A discussion of this point appears in the
Appendix. It is important for obtaining a full under-
standing of intermittency, but is not practically
significant. Enough (#,k) mimics of interest will occur as
benchmarks of the intermittent behavior of the Lyapunov
exponent for any (n,k) of interest. It would be desirable
to know which (n,k) mimics cross A, for J >J*(n,k),
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TABLE IV. Information concerning the changing scenario of intermittency for the Hénon map. We present data including the
critical values J*(n,k), J'(n,k), the saddle-node bifurcation parameter s, ;(J), the periodic window width Ap, (J), and the homo-
clinic tangency value h, ,(J) for (a) period 4, (b) period (5,1), (c) period (5,2), (d) period (5,3), (e) period (6,1), (f) period (7,2), and (g)
period (8,3).

(a) Period 4 (d) Period (5,3)

J s4(J) Apy(J) )] J s5.3(J) Aps 5(J)
0.0 1.940 551 0.002211 none 0.0 1.985 408 0.000 132
0.01° 1.917 597 0.002 261 none 0.01 1.962 812 0.000 133
0.02 1.894 610 0.002313 1.894759  0.02 1.940 189 0.000 136
0.03 1.871594 0.002 368 1.872277  0.04 1.894 876 0.000 142
0.04 1.848 551 0.002 425 1.850151  0.06°k 1.849 436 0.000 149
0.046° 1.834714 0.002 46 1.83705

d
0.050 1.825484 ©) (&) Period (6,1)
J 56,1(']) A,LLGJ(J)
(b) Period (5,1) 0.0 1.474 700 0.01090
J 55,1(J) Aps,(J) 0.03' 1.519371 0.01081
0.06 1.564 591 0.010 83
0.0 1.624 397 0.008 97 0.10 1.625 746 0.01092
0.04 1.680725 0.008 00 0.13m 1672285 0.01113
0.08 1.738 767 0.007 00
012 11797540 000642 ® Period (72
- . - J $72(0) Apy o(J)
0.16 1.857 769 0.006 05 L2 $r.2
0.20 1.917 836 0.005 79 0.0 1.673955 0.00100
0.22f 1.947 845 0.005 68 0.1 1.816 579 0.000 52
0.248 1.977765 0.005 65 0.15 1.900 581 0.00043
0.20° 1.991 904 0.000 36
(c) Period (5,2) (g) Period (8,3)

J S5’2(J) A,Llas’z(-]) J 38,3(']) A/.Lgy:;(-,)
0.0 1.860 587 0.00175 0.0 1.711037 0.000 389
0.01 1.881918 0.001 60 0.1 1.831 900 0.000 084
0.02 1.903 409 0.00147 0.2 1.973922 0.000 049
0.03 1.925073 0.001 36 0.25P 2.046 867 0.000 04
0.04" 1.946 925 0.00125 0.30¢ 2.119 690 0.000 039

2J*(4)=0.012.

5J'(4)=0.046 5.

°Not important for intermittency.

9To find the period-4 BA, one needs an internal point, e.g., (0.010295 7,1.894 360 4).

eJ*(5,1)=~0.10.

J'(5,1)=0.22

8To find the period-(5,1) BA we need an internal point: (1.659 564, —0.799 759).

hJ*(5,2)>0.04. However, the “surrounding” period-1 BA no longer exists. To find the period-(5,2) BA, one needs an internal point,
e.g., (1.890 710, —1.628 004).

0.02<J%(5,3)<0.04.

30.07<J’(5,3) <0.08.

kThe period-(5,3) BA is surrounded by the period-1 BA for all J, because at J = 1.0 it is created at a resonant bifurcation.
17*(6,1)=~0.036. For reasons that are not clear, this is larger than (J*3)!/2=0.034, the value to be expected from the scaling theory
of Ref. [20].

mJ'(6,1) <0.14. This is also greater than the value of =~0.135 predicted in Ref. [20].

"Period (7,2) is a truncation of the antiharmonic of period 3.

°If J*(7,2) were defined, it would be greater than 0.2. It is not defined because s;,(0.2)> h3(0.2)=1.979 832, and because metamor-
phosis has occurred, the period-1 BA is bounded by the period 3 SM for J >0.081 6 and thus is unstable for u>h} (0.2). A point
from which the (7,2) BA can be found at J =0.2 is (1.703 221, —0.920 502).

PJ*(8,3)~=0.25.

9J'(8,3) <0.3. The period-1 BA is stable because 43(0.3)> 54 3(0.3). Nevertheless a point in the period-(8,3) BA is needed to find the
BA: (1.716 796, —0.858 613).
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in parallel with our results for period 3, but we have not
pursued that point here.

More interesting changes of the intermittency scenario
may occur because a homoclinic line other than 4, ; (J)
interferes with the process. It may destroy the surround-
ing BA in which the manifold exists which is responsible
for h, ,(J), or, alternatively, interfere with the stability of
an (n, k)-mimic, which is less serious. We now present, in
Table IV, numerical information concerning intermitten-
cy for a number of (n,k) combinations. In each case we
give at least J*(n,k) and J'(n,k). In many cases
Sy hy  (J) and Ap, ,(J) are given for some number
of values of J. Comments of interest appear for several
cases.

VI. SUMMARY AND CONCLUSIONS

We have discussed in some detail the salient features of
the changes in type-I intermittency in the Hénon-map
family when its Jacobian parameter J is increased above
the value J =0 for which intermittency was defined, cor-
responding to the logistic-map family. For each orbit of
period n and type k that originates at a saddle-node bifur-
cation, the intermittency eventually disappears as J is in-
creased. The disappearance is accompanied by experi-
mental signatures, of which qualitative changes in the
invariant-orbit density and the Lyapunov exponent are
the most notable. The origins of these changes in the re-
lationships and the structures of invariant manifolds in
phase space are fascinating. We showed how Singer’s
theorem, which mandates one attractor for each parame-
ter value for the 1D quadratic map family, is circumvent-
ed in the 2D Hénon case by the removal of homoclinic
tangency of certain manifolds as dissipation is decreased.
We also noted the other consequences of this removal of
homoclinic tangency, and offered heuristic explanations
for the consequences of the change in linear damping on
the bifurcation structure in (J,u) parameter space.

The phase-space structure uncovered here while study-
ing type-I intermittency is complex and interesting, and it
is all necessary for a full understanding of the numerical
results. It is undoubtedly simple compared to the struc-
ture associated with phenomena requiring higher-
dimensional phase spaces for their explanations. One
wonders for how long our mental and computational
tools will be equal to the challenge.

As the next, more complicated case, we expect similar
changes in intermittency and the geometric structure of
phase space to occur for other 2D map families. The
most popular such is the dissipative standard map family,
which presents the additional complication of mode lock-
ing, and other features attendent upon its 1D dissipative
limit exhibiting both a maximum and a minimum.

Much of the interest in intermittency stems from its
prevalence in extended systems. We hope that the
present study can be included as a key element in a study
of such a system.

APPENDIX

In Secs. III and IV, we made use of the idea of 3-
mimics, defined as periodic orbits whose LIP’s are trun-
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cations of the infinite symbol sequence called the antihar-
monic extension (AHE) of period 3: RLR?LR?. ... At
J =0, and also for J <J*(3), these orbits have parameter
ranges of stability which precede that of period 3, ever
more closely as the length of the truncation increase.
Each indicates the occurrence, within period-3 intermit-
tency, of regular period-3 bursts of length equal to its
period. For J>J*(3), we found it necessary to distin-
guish LIP’s of lengths 3m and 3m +1,m any positive in-
teger (where we use the lengths of LIP’s rather than the
periods of the periodic orbits as designators). Orbits of
the first type have saddle nodes which cross the homo-
clinic line u=h%(J) as J increases, in order of decreasing
period, while those of the second type never experience
such crossings. Truncations of the antiharmonic exten-
sion of lengths 3m +2 are not LIP’s. We now extend
these considerations to truncations of the antiharmonic
extensions of the LIP’s of other periodic orbits of in-
terest.

Consider truncations of the antiharmonic extension of
the period-(n,k) orbit. If the MSS algorithm is complete
up to some period greater than or equal to n, and is fol-
lowed further, the LIP of the next orbit appearing just to
the left of (n,k) always consists of a truncation of the
(n,k) AHE slightly longer than previously used. By the
definition of a LIP, the last point of this LIP is certainly
to the right of a point # steps before it in the LIP. But,
by the definition of an AHE, each string of n adjacent
symbols in it contains an even number of R’s, and so add-
ing n symbols of the (n,k) AHE to our new LIP creates a
second new one to the MSS right of the first new one.
Iterating this process creates an infinite chain of such
LIP’s with periods nm +p, where 1 <p <n, and m is any
positive integer. This is a chain of (n,k)-mimics similar
to the two chains of 3-mimics discussed earlier. Thus if
we test the possibility of (n,k)-mimic orbits with lengths

TABLE V. A list of {n,k)-mimics for all orbits showing in-
termittency through period 7. The entries “p” are the integers
modulo n such that orbits of periods mn +p, for all integers m,
are (n,k)-mimics. AHE, when indefinitely repeated, means an-

tiharmonic extension.

(n,k) AHE P

3 RLR 1,2

4 RL*R 1,2,3
51 RLR? 1,2,4
52 RL?RL 1,2,3
53 RL*R 1,2,3,4
61 RLR’L 2,4*
62 RL?*R3 1,2,3,5
63 RL3RL 1,2,3,4
6 4 RL*R 1,2,3,4,5
71 RLR? 1,2,3,5
72 RLR*LRL 2,4,5
73 RL?RLR? 1,2,3,6
7 4 RL?R’L 1,2,3,5
75 RL?R2LR 1,2,3,5,6
76 RL3RL? 1,2,3,4
77 RL?R? 1,2,3,4,6
78 RL*RL 1,2,3,4,5
79 RL*R 1,2,3,4,5,6
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between n +1 and 2n — 1, we will have found all possible
(n,k)-mimics. [Remember that there is no length-2n
(n,k)-mimic.] Note that if no (n,k)-mimic of a particular
length exists, there is no reason to expect the nearest
MSS orbit of that period (say p) to the left of the (n,k) in-
termittent limit to relate to the (n,k) dynamics in a way
important for determining the lengths of regular bursts in
(n,k) intermittency for p near orbit p’s u-stability range.
In Table V, we list the (#, k)-mimics for periods up to 7.
The underlying reason for the omissions of mimics in

Table V is the rapidly increasing number of periodic or-

bits of period r with increasing n, and the distribution of
these among the full MSS sequence. A perusal of the Ap-
pendix of the MSS paper, which gives the sequence com-
plete to period 11, is helpful in understanding this point.
In all cases of interest, enough (r,k) mimics remain to
give form to the regular intermittent bursts. Note that
(n,k) orbits with LIP’s of the form RL" ™2, which in-
cludes period 3, have only the one unavoidable excluded
sequence. For each n, the LIP noted here is the last one
of its period and occurs very near u=2, thus having an
extremely small parameter range of existence at J =0.
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